Installing PHP on MacOS Monterey

Here is the solution to a problem faced by any PHP developer that has upgraded their Mac to Monterey only to then re-attempt to run their PHP-based application afterwards and get back the dreaded response:

php: command not found

😨

That’s not good! Did Apple get rid of PHP in their latest operating system? Surely not!

Me – an hour after upgrading my MacBook

Oh, I see, that’s exactly what they did.

Me – 5 minutes later after Googling it

Right, so, how do we fix it?

First things first, make sure you have Homebrew installed. Chances are you already do, it being similar to apt for most Linux distros, but it’s best just to check.

brew -v

If you get back something that looks like the below, then you have it installed, otherwise you’ll need to go and install it.

Homebrew 3.5.9
Homebrew/homebrew-core (git revision 3eda28188e5; last commit 2022-08-22)
Homebrew/homebrew-cask (git revision eacfe8f6c1; last commit 2022-08-22)

Right, so now, just brew install php right? Unfortunately, this won’t work in quite the way you’re expecting, so it’s best now to install a formula that actually allows for more versions of PHP to become available, than were available on older versions of MacOS anyway:

brew tap shivammatur/php

Now you can install it, the only caveat is that you need to specifically choose the version (unless it’s 8.0).

brew install shivammatur/php/php@8.1

Other options available are:

  • 5.6
  • 7.0
  • 7.1
  • 7.2
  • 7.3
  • 7.4
  • 8.0 – as above, you can remove the @ part for this version

Now you need to link it to the php command:

brew link --overwrite --force php@8.1

Where possible of course, I’d usually recommend using the latest available version.

Now all these changes mean we need to restart our terminal before PHP will work, so once you’ve done that run php -v and you should get back something like the below:

PHP 8.1.9 (cli) (built: Aug  4 2022 15:11:08) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.1.9, Copyright (c) Zend Technologies
    with Zend OPcache v8.1.9, Copyright (c), by Zend Technologies

What if I want to change my PHP version?

You can change the PHP version that is installed and linked, but you will need to restart your terminal again after doing so. Let’s say I want to switch back to 7.4 for some reason:

brew install shivammatur/php/php@7.4

(You will only need to do the install step once.)

brew unlink php && brew link --overwrite --force php@7.4

Of couse, you need to unlink the command from its current destination before you can link it somewhere else!

But, wait, couldn’t I just use Docker?

Docker Moby Logo

In most cases, indeed you could! I’d actually recommend this method wherever possible, as you can spin up an image in moments with all the necessary dependencies, configurations, and of course PHP version for your project. However, my situation is rather unique (although maybe not as unique as I think) in that when accessing private Gitlab repositories for my company, even so far that I have to be connected to the company’s VPN to even access the login page, your SSH keys that are on your machine can’t then be used by a Docker container even if it is running on that same machine.

Docker also givs you the advantage of offering more versions. A lot more versions. A huge number of versions! A cursory glance at the tags available on the Docker Hub should give you an idea.

Conclusion

Is there a roadblock preventing you from using Docker, or a very good reason why you shouldn’t? Perhaps you haven’t learned Docker yet, luckily the learning curve is easy for beginners to get onto so I may well do an article on that as well (maybe even a video, I haven’t decided yet). If there is such a reason or roadblock, then go through the process I’ve described above. Otherwise, Dock away!

Oh, and, even if you do go down the Docker route, I’d still suggest at least completing the Homebrew step at the start of this post. A Mac without Homebrew is a bit like an internal combustion car without a gearbox, it will still work, but not nearly as well as it should!

Re-approaching the Project Euler Problems: Uh-oh

This all happened one quiet Friday evening.

I was at my laptop happily working away on my new system for tackling the Project Euler problems, and had just got both PHP and JavaScript playing nicely with the Python script (one of many) that I had created, which takes all the data of the language, version, machine specs (OS, memory, that sort of thing). Success! Naturally I had written scripts in each of the 3 languages to tackle – where else to start? Problem 1.

Problem 1 asks you to find the sum of all the multiples of 3 or 5 below 1000, of course for this project I am taking it a bit further and finding the sum of all said multiples below x, but it defaults to 1000 if no value of x is provided.

When I hit enter on the JavaScript file for the first successful time my heart leapt with joy as it reported no errors. Then just as quickly that joy turned to suspicion, “that answer looks different to the one Python has been giving me, oh please don’t be”.

Now it doesn’t take a particularly keen eye to spot that something has gone very wrong with at least 2 of these, they’re not even just a little bit out from each other, the JavaScript one is over 100,000 more than the next highest, PHP! The question now is, which one is right? Or even, are they all wrong?

This could well mean that all the data I have been collecting thus far is useless. I mean, what good is knowing how long it took a particular script to give you the wrong answer?

And here I was thinking I’d get away without automated testing! *Sigh* yet another bit to add! One of these days I might actually start solving the problems themselves!

The much older and wiser Gavin from 20 minutes in the future: Get away without automated testing? What on earth were you thinking, Gavin? You go ahead and do what you want but I’m going to bed 💤.

Re-approaching the Project Euler Problems – an Introduction

Avid readers of this blog (of which I’m sure there are many, I mean, there are 14 whole posts on here at the time of writing!) will remember that back in 2019 I started solving the Project Euler Problems, I set myself the task of solving 1 problem a week, writing a bit about it, and posting it every Sunday at 3PM without fail.

Needless to say, I failed. The few posts that did manage to see the light of day are now available under the project euler 2019 tag in all their glory. I started doing the first few in PHP then switched to Python, then wondered why I shouldn’t do them all in both of those languages, then thought about other languages such as JavaScript, C, Rust and C++, then tried to build all sorts of tools to help me manage all of this. Plus how would I store the code to display it? It took me quite a while to settle on Gists which with hindsight really should have been my first port of call. Can I really be sure I’ll be at my desk at 3PM on a Sunday every week for 749 weeks? No, of course I can’t, I’d better automate that part. 749 weeks is just under 14 and a half years. Meaning that if I had kept up with it from the latter half of 2019, it would run to about the end of 2033. My 28-year-old self would then be 42, my newborn infant would be about to start his GCSEs, you see where this is going, it’s a commitment. One way to combat this is to construct some tools around it to help automate it – as well as adding a few supplementary features – such as:

  • First of all, I want to make sure my code works, so automatic compilers for the languages that need compilation. These will also need to be tailored to the platform I happen to be running them on, especially given that back in 2019 I only had a clunky old laptop running Ubuntu. I now still have that same laptop, but also a much newer, smaller, Windows laptop, and now a MacBook from my new job. On the plus side this does now give me all 3 of Linux, MacOS and Windows!
    • I wonder if there’s a way to get these running on Android/iOS as well! Maybe save that for another day.
  • A tool to turn Markdown posts into nicely-formatted blog posts suitable for WordPress.
  • A way to automate their publishing for 3PM each Sunday – this is actually the easy part, just write them ahead of time and set their publish dates accordingly. Then again, who’s to say I won’t decide to alter this?
  • A tool to upload my code files into Gists (as well as maintaining the whole thing as a Git repo anyway).
    • This one is quite troublesome because at the time of writing my way of making sure a Gist for a given problem and language doesn’t already exist is a bit hit-and-miss.
  • A WordPress block to pull down all the Gists relating to the problem being viewed.
    • This has the same issue, however, as my Gist-uploading tool above. When I was going through the posts to add the project euler 2019 tag, problem 1 believed I’d only written it in C++ and Java!
  • A way to manage and maintain all of this, including making updates where necessary.
  • Additional feature: It would be nice to include a D3-based scatter plot of how long each language takes to solve each problem given different input values. This in itself is a huge data collection project, meaning I need to store the language, values, results, time taken and machine specs in a CSV for each problem. The latest version of the design for this can be seen on VizHub, and treat yourself to a screenshot below! This may give some insights beyond just “which languages are faster?” such as “does a particular language work better on a certain machine?”, “how do various language cope with higher inputs?” And so on.
Example screenshot of what each scatter plot will look like.
Example screenshot of what each scatter plot will look like, subject to change as it is still in development. Oh and that JavaScript outlier isn’t real data in case you were wondering!

So where to even begin with all this? Well, luckily, I’m writing this partway through getting my system built up, so I already have something of an idea of what to do. One thing I have noticed copied across multiple files (most of this automation is being done in Python) is a duplication of the dictionary containing the language names and file extensions. It would be good to get a comprehensive list of the ones I’ll be working on in a separate file wouldn’t it? Luckily I have found this Gist from Peter Pisarczyk (in turned forked from Aymen Mouelhi) which contains what appears to be just about every programming language ever. I haven’t gone through the whole list but I reckon it’s a fairly safe bet that I haven’t even heard of more than half of them!

This then results in the following languages.json file – I never knew there were this many file extensions in the known universe!:

At each step I’ll be looking to see what our basic folder structure looks like, so at the moment:

project-euler
├get_working_language_extensions.py
└working_language_extensions.json

Now as an example, let’s look at what I want each problem folder to look like:

project-euler
├problem_x
│├problem_x_timings.csv // To store the info of how long each problem took to solve, also store the input value, language, and machine specs
│├problem_x.c
│├problem_x.cpp
│├problem_x.java
│├problem_x.js
│├problem_x.md // To be converted into the relevant blog post
│├problem_x.php
│├problem_x.py
│├problem_x.rs
│└problem_x.ts
├get_working_language_extensions.py
└working_language_extensions.json

And for completeness and to allow me to make my next post in this series but still chronologically after this (albeit not by much), without leaving this one looking a bit short, here is the full file list (for now at least!) Along with a brief explanation, there will of course be full posts explaining these in due course!

project-euler
├problem_x
│├problem_x_timings.csv // To store the info of how long each problem took to solve, also store the input value, language, and machine specs
│├problem_x.c
│├problem_x.cpp
│├problem_x.java
│├problem_x.js
│├problem_x.md // To be converted into the relevant blog post
│├problem_x.php
│├problem_x.py
│├problem_x.rs
│└problem_x.ts
├.gitignore // (obviously!)
├c_functions.c // Functions to be imported into C scripts, not sure yet but this may need to be .h, once I dive properly into C I'll find out!
├cpp_functions.cpp // Functions to be imported into C# scripts
├env_info.json // gitignored as it's machine specific
├file_operations.py // All file-related operations
├file_templates.py // Templates for files in each language, hopefully to prepopulate imports, boilerplate, etc. in each folder
├get_env.py // Run this to creat env_info.json above
├github_config.py // Generated tokens for working with my Gists
├github_credentials.json // gitignored as these are the API keys for github_config to use! 
├java_functions.java
├js_functions.js
├languages.json // Renamed from working_language_extensions.json in the code block above
├languages.py // Renamed from get_working_language_extensions.py in the code block above
├mkdirs.py // Create all the directories for each problem, may merge this into file_operations.py
├php_functions.php
├problem_descriptions.json // I created this to allow the chart I'm designing to pull down a subtitle, may change how I do this
├publish_to_wordpress.py
├publish.py // A lot of duplicate code between these two, but the idea is that this automates creating the blog posts
├pyfuncs.py
├README.md
├rust_functions.rs
├ts_functions.ts
├updategists.py // Functions for working with Gists
├wp_config.py // Much like github_config.py but for WordPress
└wp_credentials.json // Again, like github_credentials, gitignored as these are keys

Creating a setter function in JavaScript Objects

As part of one of my projects I have had a central object called "layout" with it being to do with manipulating SVGs, and as part of that I decided it would be easier to write said layout object such that it has a getter and setter function, so that:

layout.item.points.X = 20;

…becomes:

layout.set('item.points.X',20);

…much more verbose and much more functional, I’m sure you’ll agree!

So first, the getter function, well, this couldn’t be easier really:

const layout = {
  get: function() {
    return this;
  },
  set: // To be confirmed
  /* All other properties */
}

But now, what about the setter? Well, that’s where it gets a bit more complicated. First, we need to take the propChain and newState from the user:

const layout = {
  set: function(propChain,newState) {}
}

I have written it so that it follows the usual object notation, as per the example above, so if you want to set item’s pointX value to 20 you give it layout.set('item.points.X',20).

First of all, let’s prevent the user from being able to change either the setter or getter:

const layout = {
  set: function(propChain,newState) {
    if (['get','set'].includes(propChain)) {
      console.warn(`🛑 What are you doing? Should you really be changing either of these functions? `);
      return;
    }
  }
}

And get our function to exit if the propChain is empty:

const layout = {
  set: function(propChain,newState) {
    if (['get','set'].includes(propChain)) {
      console.warn(`🛑 What are you doing? Should you really be changing either of these functions? `);
      return;
    }
    if (!propChain) return;
  }
}

Now for the fun bit! We want to split our propChain into sections and:

  • Check for the first property on our original object, and create it if it isn’t there
  • If it is there (which it now is) check if we’re at the end of the provided chain
  • If we are, set the property to equal the given newState
  • If not, go one level further into the object (having just created the new property) and repeat from step 1
const layout = {
  set: function(propChain,newState) {
    if (['get','set'].includes(propChain)) {
      console.warn(`🛑 What are you doing? Should you really be changing either of these functions? `);
      return;
    }
    if (!propChain) return;
    propChain.split('.').reduce((original/*Object*/,prop,level/*how deep we are into the chain*/) => {},this);
  }
}

So, um, what?

Let’s go through it bit-by-bit.

We use the split function to split propChain from a string into an array, using . as the breaking point (just how you’d access an object property in JavaScript anyway) on which we can now use the reduce function.

The reduce function is immensely powerful and I’m often guilty of discarding it in favour of map because I’m more comfortable there.

The reduce function takes up to 4 parameters (read more on MDN) but we’re only interested in the first 3: the accumulated value, the current value and the current index, which we’re calling original, prop and level.

const layout = {
  set: function(propChain,newState) {
    if (['get','set'].includes(propChain)) {
      console.warn(`🛑 What are you doing? Should you really be changing either of these functions? `);
      return;
    }
    if (!propChain) return;
    propChain.split('.').reduce((original,prop,level) => {
      // Firstly, check if our original object has the property, and add it if not.
      if (!(prop in original)) {
        original[prop] = {}; // Why a blank object? In case we go deeper into the chain and need to add properties to this, which you can't on undefined, 0 or an empty string
      }
    },this);
  }
}

Could I not have used original.hasOwnProperty(prop)? In JavaScript yes but in TypeScript the linter shouts at you: Do not access Object.prototype method 'hasOwnProperty' from target object no-prototype-builtins.

const layout = {
  set: function(propChain,newState) {
    if (['get','set'].includes(propChain)) {
      console.warn(`🛑 What are you doing? Should you really be changing either of these functions? `);
      return;
    }
    if (!propChain) return;
    propChain.split('.').reduce((original,prop,level) => {
      if (!(prop in original)) {
        original[prop] = {};
      }
      // Now check if we're at the end of our given chain and if we are, set the property to the given newState
      if (level === propChain.split('.').length - 1 /*Remember, indexing starts at 0*/) {
        original[prop] = newState;
      }
      // Now return our object, and that's it!
      return original[prop];
    },this);
  }
}

Finally we arrive at:

const layout = {
  get: function() {
    return this;
  },
  set: function(propChain,newState) {
    if (['get','set'].includes(propChain)) {
      console.warn(`🛑 What are you doing? Should you really be changing either of these functions? `);
      return;
    }
    if (!propChain) return;
    propChain.split('.').reduce((original,prop,level) => {
      if (!(prop in original)) {
        original[prop] = {};
      }
      if (level === propChain.split('.').length - 1) {
        original[prop] = newState;
      }
      return original[prop];
    },this);
  }
}

Or, in TypeScript:

interface LayoutObject extends Record<string, unknown> {
  get: () => LayoutObject;
  set: (
    propChain: string,
    newState: Record<string, unknown> | string | number
  ) => void;
  // All the rest of our properties
}

// TypeScript uses interfaces to define, well, almost everything!

const layout: LayoutObject = {
  get: function (): LayoutObject {
    return this;
  },
  set: function (
    propChain: string,
    newState: Record<string, unknown> | string | number
  ): void {
    if (['get', 'set'].includes(propChain)) {
      console.warn(
        `🛑 What are you doing? Should you really be changing either of these functions?`
      );
      return;
    }
    if (!propChain) return;
    propChain.split('.').reduce((original, prop, level) => {
      if (!(prop in original)) {
        original[prop] = {};
      }
      if (level === propChain.split('.').length - 1) {
        original[prop] = newState;
      }
      return original[prop];
    }, this);
  },
  // All the rest of the properties
}

Solving the Project Euler Problems – Problem 6

The sum of the squares of the first ten natural numbers is, 12 + 22 + … + 102 = 385.

The square of the sum of the first ten natural numbers is, (1 + 2 + … + 10)2 = 552 = 3025.

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

No gists found

This one oddly seems relatively simple. simply take a number, work out the sum of 1 to that number then square it, work out the sum of the squares of 1 to that number and find the difference between your 2 results. Job done!